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Definition

Mapping / Map :

𝑓:ℝ → ℝ

A function between domains/ spaces 

Examples

𝑓 𝑥 = 𝑥2

(boring!)



𝑓:ℝ2 → ℝ2



𝑓:𝕄 → ℝ2



𝑓:𝕄 → 𝕄′



𝑓: 𝕊2 → 𝕄



𝑓: 𝑉 → ℝ3



Applications…



[Sorkine & Alexa 07]

[Jacobson 07]
[Weber et al. 09]

[Ju et al. 05]

[Lipman et al. 07]

Deformations

[Kovalsky et al. 2014]



[Mullen et al. 08]

[Lévy et al. 02] [Schuler et al. 13]

[Weber et al. 12]

[Fu et al. 15]

Parameterizations



[Panozzo et al. 13]

[Jin et al. 08]
[Schreiner et al. 04][Kraevoy and Sheffer 04]

[Ovsjanikov et al. 12][Kim et al. 11]

Surface mappings



Discrete maps…



Smooth case

e.g., a smooth surface is mapped to ℝ2



𝑀 ℝ2

Discrete case

e.g., a surface mesh is mapped to ℝ2



An instructive example: 
parameterization

𝑀 ℝ2

𝑣𝑖

Φ𝑖

𝑣𝑖 is mapped to Φ𝑖 ∈ ℝ
2

Constants

(Given)

Variables

(Define the map)

Focus on a 
Specific embedding



ℝ2

Tutte’s embedding



ℝ2

Tutte’s embedding

Φ𝑖

Φi = pi

1. Boundary mapped to convex polygon

Linear in Φ𝑖



ℝ2

Tutte’s embedding

Φ𝑖

1. Boundary constrained to convex polygon

2. Discrete Harmonic - Interior vertices at average of 
neighbors

Φi =
1

|𝑁𝑖|
 

𝑗∈𝑁𝑖

Φ𝑗Φ𝑗



ℝ2

Tutte’s embedding

Φ𝑖

1. Boundary constrained to convex polygon

2. Discrete Harmonic - Interior vertices at average of 
neighbors

Φi =  

𝑗∈𝑁𝑖

𝑤𝑖𝑗Φ𝑗

(𝑊𝑖𝑗 positive, sum to 1)

Linear in Φ𝑖

Φ𝑗
𝑤𝑖𝑗



Tutte’s embedding

𝑀 ℝ2

1. Boundary to convex polygon 

2. Harmonic

Solve sparse 
linear system!



Tutte’s embedding

𝑀 ℝ2

1. Bijective: The graph edges don’t overlap themselves

2. Discrete Harmonic: analog to smooth harmonic maps



Continuous harmonic maps

• Harmonic function: 

Δ𝑓 = 0 𝑧 = 𝑓(𝑥, 𝑦)

“Laplacian –

difference of value 

at point to average 

of neighborhood”



Continues harmonic maps

• Harmonic map:
Δ𝑢 = 0
Δ𝑣 = 0

• 𝑝mapped to average of neighborhood!

• By construction, the discrete case

(𝑢, 𝑣)
𝑝



Tutte’s embedding



Computing maps



Computing maps



Computing maps



Computing maps



Computing maps



Computing maps



Computing maps

• Imposing constraints

• Finding maps that are most…



Energy

Constraints

Constrained Optimization

argmin
Φ
𝐸 Φ

s.t. Φ ∈ 𝐾

Φ



Energy

Φ



Energy

Φ

u1

u3u2

v1

v2
v3



Energy

Φj 𝑥 = 𝐴𝑗𝑥 + 𝛿𝑗

𝐸 𝛷 = 𝐸 𝐴1, … , 𝐴𝑚



Map optimization

• In terms of differentials:

argmin 𝐸 A1, … , Am

Aj



Map optimization

• In terms of differentials:

argmin 

𝑗

𝑓 𝐴𝑗 Separable

Aj



Map optimization

Φ

argmin 

𝑗

𝑓 𝐴𝑗

Must impose continuity!



Explicit continuity
• Optimization variables: 𝐴1, 𝐴2, … , 𝐴𝑚

• Adjacent 𝐴𝑗’s must agree

𝐴𝑖

𝐴𝑗

𝑣1

𝑣2
𝐴𝑖𝑣1

𝐴𝑖𝑣2

𝐴𝑗𝑣2

𝐴𝑗𝑣1



Explicit continuity

𝐴𝑖

𝐴𝑗

𝑣1

𝑣2

𝐴𝑖𝑣1 = 𝐴𝑗𝑣1
𝐴𝑖𝑣2 = 𝐴𝑗𝑣2

• Optimization variables: 𝐴1, 𝐴2, … , 𝐴𝑚

• Adjacent 𝐴𝑗’s must agree



Implicit continuity

𝐴𝑖 𝑣1 𝑣2 𝑣3 = 𝑢1 𝑢2 𝑢3

𝐴𝑖 = 𝑢1 𝑢2 𝑢3 𝑣1 𝑣2 𝑣3
†

𝐴𝑖 = 𝐴𝑖 𝑈

𝐴𝑖

𝑣1

𝑣2

𝑣3
𝑢1

𝑢2 𝑢3

Linearly express 𝐴𝑖’s in terms of 𝑈



Implicit continuity

• Optimization variables: 𝑢1, 𝑢2, … , 𝑢𝑛 (𝑈)

𝐴𝑖

𝑣1

𝑣2

𝑣3
𝑢1

𝑢2 𝑢3

𝐸 Φ = 

𝑗

𝑓 𝐴𝑗 𝑈



Popular energies

argmin 

𝑗

𝑓 𝐴𝑗



Dirichlet

𝐸𝐷 = 

𝑗

𝑤𝑗 𝐴𝑗 𝐹
2

Φ

area / volume



Dirichlet

𝐸𝐷 = 

𝑗

𝑤𝑗 𝐴𝑗 𝐹
2

Φ



Dirichlet

𝐸𝐷 = 

𝑗

𝑤𝑗 𝐴𝑗 𝐹
2

Φ



Dirichlet

?

[Weber & Zorin 2014]



Dirichlet

Ψ−1 ∘ Φ

[Weber & Zorin 2014]

Φ Ψ



Dirichlet

[Weber & Zorin 2014]



Orthogonal and Similarity

• 𝑅 is orthogonal if 𝑅𝑇 = 𝑅−1
(rotation if det 𝑅 > 0)

• 𝑆 is a similarity if 𝑆 = 𝛼𝑅



Closest rotation/similarity

• ℛ(𝐴) = closest orthogonal/rotation matrix to 𝐴

• 𝒮(𝐴) = closest similarity matrix to 𝐴

• Computable using SVD:

𝐴 = 𝑈Σ𝑉𝑇;        Σ=diag 𝜎1, … , 𝜎𝑛

• ℛ 𝐴 = 𝑈Σ𝑉𝑇 = 𝑈𝑉𝑇

• 𝒮 𝐴 = 𝜎𝑈𝑉𝑇

mean of SVs



Least Squares Conformal Map (LSCM)

𝐸𝐿 = 

𝑗

𝑤𝑗 𝐴𝑗 − 𝒮 𝐴𝑗 𝐹
2

closest similarity



Least Squares Conformal Map (LSCM)

𝐸𝐿 = 

𝑗

𝑤𝑗 𝐴𝑗 − 𝒮 𝐴𝑗 𝐹
2

amount of non-similarity



Least Squares Conformal Map (LSCM)

𝐸𝐿 = 

𝑗

𝑤𝑗 𝐴𝑗 − 𝒮 𝐴𝑗 𝐹
2

amount of non-similarity



Least Squares Conformal Map (LSCM)

𝐸𝐿 = 

𝑗

𝑤𝑗 𝐴𝑗 − 𝒮 𝐴𝑗 𝐹
2
= 0

global similarity = discrete conformal maps



Least Squares Conformal Map (LSCM)

[Lévy et al. 2002]



As-Rigid-As-Possible (ARAP)

𝐸𝑅 = 

𝑗

𝑤𝑗 𝐴𝑗 − ℛ 𝐴𝑗 𝐹
2

closest rigid transformation



As-Rigid-As-Possible (ARAP)

𝐸𝑅 = 

𝑗

𝑤𝑗 𝐴𝑗 − ℛ 𝐴𝑗 𝐹
2

amount of non-rigidity



As-Rigid-As-Possible (ARAP)

[Sorkine & Alexa 2007*; Chao et al. 2010]



ARAP vs. LSCM

ARAP LSCM



ARAP vs. LSCM

ARAP LSCM



Recap: Popular energies

Dirichlet 𝐴𝑗 𝐹
2

LSCM 𝐴𝑗 − 𝒮 𝐴𝑗 𝐹
2

ARAP 𝐴𝑗 − ℛ 𝐴𝑗 𝐹
2



Recap: Popular energies

Dirichlet 𝐴𝑗 𝐹
2

Least squares

LSCM 𝐴𝑗 − 𝒮 𝐴𝑗 𝐹
2

ARAP 𝐴𝑗 − ℛ 𝐴𝑗 𝐹
2



similarity anti-similarity

Closest Similarity – 2d case

• 𝒮 𝐴 = 𝜎𝑈𝑉𝑇

• Takes a closed form:

𝐴 =
𝑎 𝑐
𝑏 𝑑

=
1

2
𝑎 + 𝑑 𝑐 − 𝑏
𝑏 − 𝑐 𝑎 + 𝑑

+
1

2
𝑎 − 𝑑 𝑐 + 𝑏
𝑏 + 𝑐 −𝑎 + 𝑑



Recap: Popular energies

Dirichlet 𝐴𝑗 𝐹
2

Least squares

LSCM 𝐴𝑗 − 𝒮 𝐴𝑗 𝐹
2

ARAP 𝐴𝑗 − ℛ 𝐴𝑗 𝐹
2

anti-similarity



Recap: Popular energies

Dirichlet 𝐴𝑗 𝐹
2

Least squares

LSCM 𝐴𝑗 − 𝒮 𝐴𝑗 𝐹
2

2d – Least squares

ARAP 𝐴𝑗 − ℛ 𝐴𝑗 𝐹
2



Recap: Popular energies

Dirichlet 𝐴𝑗 𝐹
2

Least squares

LSCM 𝐴𝑗 − 𝒮 𝐴𝑗 𝐹
2 2d - least squares

iterative approximation

ARAP 𝐴𝑗 − ℛ 𝐴𝑗 𝐹
2

iterative approximation



But ℛ 𝐴𝑗 is easy to compute…

Where’s the difficulty?

𝐸𝑅 = 

𝑗

𝑤𝑗 𝐴𝑗 − ℛ 𝐴𝑗 𝐹
2

• Not very friendly for direct minimization:

𝐴 − ℛ 𝐴 = 𝐴 − 𝑈𝑉𝑇

via SVD of 𝐴



Local step

Global step

Alternating optimization

𝐸𝑅 = 

𝑗

𝑤𝑗 𝐴𝑗 − ℛ 𝐴𝑗 𝐹
2

• Iteratively:
• Compute and fix 𝑅𝑗 = ℛ 𝐴𝑗
• Minimize

 

𝑗

𝑤𝑗 𝐴𝑗 − 𝑅𝑗 𝐹
2

[Liu et al. 2008]



























Alternating optimization

• Very general

• Related jargon:
gradient descent, global-local, 
alternating projections, proximal algorithms

[Bouaziz et al. 2012]



Singular values perspective

Dirichlet 𝐴 𝐹
2

LSCM 𝐴 − 𝒮 𝐴 𝐹
2

ARAP 𝐴 − ℛ 𝐴 𝐹
2



Singular values perspective

Dirichlet 𝐴 𝐹
2  𝑘 𝜎𝑘

2

LSCM 𝐴 − 𝒮 𝐴 𝐹
2  𝑘 𝜎𝑘 − 𝜎

2

ARAP 𝐴 − ℛ 𝐴 𝐹
2  𝑘 𝜎𝑘 − 1

2

mean of SVs



Singular values

𝐴
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥



Other SV energies

• Parameterization
𝜎1
𝜎2
+
𝜎2
𝜎1

Most Isometric Parameterization
[Hormann & Greiner 2000]



Other SV energies

• Parameterization max 𝜎1,
1

𝜎2

[Sorkine et al. 2000]



Other SV energies

• Parameterization

[Smith & Schaefer 2015]

𝜎1
2 +𝜎2

2 +
1

𝜎1
2 +
1

𝜎2
2



Other SV energies

• Surface mapping 𝜎1
2 +𝜎2

2 +
1

𝜎1
2 +
1

𝜎2
2

[Schreiner et al. 2014]



Other SV energies

• Surface mapping 𝜎1
2 +
1

𝜎2
2

[Aigerman et al. 2014]



Other SV energies

• Volume mapping 𝜎1 − 𝜎
2 + 𝜎2 − 𝜎

2 + 𝜎3 − 𝜎
2

[Paillé & Poulin 2012]



Other SV energies

• Volumetric mesh improvement
𝜎1
𝜎3

[Freitag & Knupp 2002]



Spaces of Mappings

det > 0

Similarities

Rotations



Spaces of Mappings

det > 0

Similarities

Rotations

I  
want to map rigidly

I  
want to 

map rigidly

I  
want to map rigidly

I  
want to 

map rigidly



Example

As-Rigid-As-Possible



Spaces of Mappings

det > 0

Constraints 
on SVs

Similarities

Rotations



Where’s the challenge?

• Singular values = roots of polynomials

• So they’re:
• Non-linear

• Non-convex

• No closed form

• Yet they’re awesome!

BEFORE AFTER



SV constraints (+energy)

[Kovalsky et al. 2014]

Approximate via a sequence of convex programs

[Lipman 2012]



Non-convex Convex

• Simplest constraint

𝜸 ≤ 𝜎𝑖 ≤ 𝚪

Bounding SVs

𝛾

Γ



Convex = Simple?

• Cone of positive semidefinite matrices

𝐴 ∶ 𝑥𝑇𝐴𝑥 ≥ 0 for all 𝑥

“easy”



Convex = Simple?

• Cone of copositive matrices

𝐴 ∶ 𝑥𝑇𝐴𝑥 ≥ 0 for all 𝑥 ≥ 0

“very difficult”



Standard convex conic programs

• Linear inequalities

𝑐𝑇x ≤ 𝑑

⇒ linear programming (LP)



Standard convex conic programs

• Second order (ice cream) cones

x 2 ≤ 𝑡

⇒ second order cone programming (SOCP)



Standard convex conic programs

• Linear matrix inequalities (LMIs)

𝑋 ≽ 0

⇒ semidefinite programming (SDP)

symmetric and
𝜆𝑖 ≥ 0



Hierarchy

SDPSOCPLP

Guarantees & efficient optimization engines!



Convexification

Convex
Relaxation



Convex
Relaxation

Convex
Cover

Convexification



Key observation

+

Symmetric Anti-symmetric

𝐴



Key observation

𝛾 ≤ 𝜎min
𝐴 + 𝐴𝑇

2
𝛾 ≤ 𝜎min 𝐴

+

Symmetric Anti-symmetric



SOCP – 2d
SDP – 3d and higher

Key observation

𝛾 ≤ 𝜎min
𝐴 + 𝐴𝑇

2
𝛾 ≤ 𝜎min 𝐴



2d vs. 3d

2-d 3-d (and higher)



2d vs. 3d

2-d 3-d (and higher)

𝒮 𝐴 has a closed linear form 𝒮 𝐴 is non-linear



2d vs. 3d

2-d 3-d (and higher)

𝒮 𝐴 has a closed linear form 𝒮 𝐴 is non-linear

𝑅1𝑅2 = 𝑅2𝑅1 𝑅1𝑅2 ≠ 𝑅2𝑅1



2d vs. 3d

2-d 3-d (and higher)

𝒮 𝐴 has a closed linear form 𝒮 𝐴 is non-linear

𝑅1𝑅2 = 𝑅2𝑅1 𝑅1𝑅2 ≠ 𝑅2𝑅1

𝜎𝑖’s have a closed form roots of ≥ 6th degree poly



2d vs. 3d

2-d 3-d (and higher)

𝒮 𝐴 has a closed linear form 𝒮 𝐴 is non-linear

𝑅1𝑅2 = 𝑅2𝑅1 𝑅1𝑅2 ≠ 𝑅2𝑅1

𝜎𝑖’s have a closed form roots of ≥ 6th degree poly

SOCP SDP



Extremal Quasiconformal Mappings

𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞 max
𝑖

𝜎max(𝐴𝑖)

𝜎min 𝐴𝑖

𝜎max(𝐴𝑖)

𝜎min 𝐴𝑖



Extremal Quasiconformal Mappings

“Most Conformal Mapping”

• Well studied in 2D [Weber et al. 2012]

• Little known in 3D…

𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞 max
𝑖

𝜎max(𝐴𝑖)

𝜎min 𝐴𝑖

histogram of distortions



Extremal Quasiconformal Mappings



Extremal Quasiconformal Mappings



Injectivity



Injectivity

• “Map is 1-to-1”
𝑔

𝑓



Injective affine map

𝐴 ≠ 0

𝐴

𝐴 = 0



Injective affine map

𝐴 < 0

𝐴



Injective piecewise affine map

• Different orientation?

• Not injective on edges 

Φ

𝐴𝑗 < 0



Injective piecewise affine map

• Injecitivity requires consistent orientation!
• Is it sufficient?



Injective piecewise affine map

• Consistent orientation

• Not injective only on inner vertex

Φ



Injective piecewise affine map

• Winding around vertex should be 2𝜋

Φ

Ψ

2𝜋

4𝜋



Face Edge vertex

Locally Injective

Non-Injective

𝐴 ≠ 0 𝐴 > 0  𝜃𝑖 = 2𝜋

Local Injectivity

• “in a small neighborhood, we are injective”



Injective piecewise affine map

• Note: winding around vertex is always 2𝜋𝑘

Φ

Ψ

2𝜋

4𝜋



• if:

• Initialize from 2𝜋 around each vertex (tutte)

• Deform the flattenings continuously, avoid flips

• Then:

• Still 2𝜋

• i.e., maintain local injectivity!

Tutte’s embedding

Injective piecewise affine map

[Aigerman2014]



Face Edge vertex

𝐴 ≠ 0 𝐴 > 0  𝜃𝑖 = 2𝜋

Local Injectivity

• “in small neighborhood, we are injective”

• Local inj < Global inj
• e.g., 𝑓 is locally inj

𝑓

Important on its own!



Global injectivity?

• [Tutte1961]: my embedding is injective!

• [Lipman2012,Aigerman2013]: If boundary map is 
injective + no flips, then globally injective!



Injective boundary

• Fixed
• Highly constrained

[Gortler et. al 2006]



Injective boundary

• Prevent boundary from overlapping during 
optimization
• Hard to optimize

[Smith and Schaefer 2015]



Variations on a theme



Parameterizing a disk…



Parameterizing a sphere?



Naïve solution for spheres

Reduce spheres to disks…

cut



Kind of unnatural



Instead of fixed boundary…



90∘

90∘

Φ𝑖′

Φ𝑖

𝑣𝑖

Periodic boundary!



Cone manifolds

[Myles and Zorin 2013] [Springborn et al. 2008]

[Bommes et al. 2009] [Aigerman and Lipman 2015]



Tutte for sphere

Linear conditions for bijective parameterization



1. Periodic Boundary

90∘

90∘

Φ𝑖′

Φ𝑖

𝑣𝑖

Linear constraint



90∘

1. Periodic Boundary

Can glue copies across cuts!



1. Periodic Boundary
Can (conceptually) tile the whole plane



2. Discrete Harmonic Tiling
Each vertex in average of neighbours



Harmonic tiling of ℝ2

Just like classic Tutte - globally injective!



Orbifold Tutte Embeddings
If:

1. Boundaries are rotated copies that tile the plane

2. The tiling is harmonic everywhere

Then:

There exists a unique solution, and it is injective!

Solve sparse 
linear system!



Why does it work?
Euclidean orbifold = cone manifold which tiles ℝ2



Different cuts yield same embedding



Embed seamlessly into a “pillow”



Surface maps



Surface maps

• Input:

– Two surface meshes 𝑀,𝑁

– Coarse set of corresponding landmarks 

• Output: a map 𝑓:𝑀 → 𝑁

– Bijective (1-1 and onto)

– High quality (low isometric distortion)

– Maps landmarks correctly

𝑀 𝑁



How to represent a surface map?

• Use parameterizations!

𝑀 𝑁Φ Ψ



Use flattenings to ℝ2

Connect landmarks with curves

Extend landmark correspondence to the curves



Cut the mesh and map to disk



Flattenings to ℝ2

Φ Ψbijective bijective

Boundaries are identical

BijectiveThis defines a bijection
between the meshes!



Φ Ψ

𝑓

Recovering the bijection

𝚽(𝒑) 𝚽(𝒑)

𝒑
𝚿−𝟏 𝚽 𝒑

= Ψ−1 ∘ Φ

This defines a bijection
between the meshes!

bijectiveΦ bijective



𝑓

Recovering the bijection

= Ψ−1 ∘ Φ

Continuous across cuts!
bijectiveΦΦ Ψbijective



𝑓

Is this good enough?

= Ψ−1 ∘ Φ

ΦΦ Ψ



𝑓

Is this good enough?

= Ψ−1 ∘ Φ

bijective bijective

Tutte’s
embedding

Bijective

Boundaries are identical

Φ Ψ



𝑓

Is this good enough?

= Ψ−1 ∘ Φ

Distortion

Φ Ψ



𝑓= Ψ−1 ∘ Φ

Distortion

Problem: fixed boundary causes distortion

Reduce the flattenings’ distortion!

Φ Ψ



𝑓= Ψ−1 ∘ Φ

Let the boundaries move!

Φ Ψ
Distortion



𝑓= Ψ−1 ∘ Φ

Let the boundaries move

No overlap – no problem

Bijective

Boundaries are identical
Φ Ψ



Overlaps

Ψ



The non-injective case

Φ Ψ

𝑓= Ψ−1 ∘ Φ

[Aigerman et al. 2014]
We can still recover a bijection If 

locally injective!



Cuts affect mapping!

𝑓



Cuts affect mapping!

𝑓



How to achieve seamless result?

𝑓



Orbifolds are seamless



Define map via orbifold embeddings



Summary



Piecewise linear is simple yet 
powerful



Beyond piecewise linear 

• Meshless (e.g., thin plate splines)



Beyond piecewise linear 

• Higher order FEM

[Liu et al. 2014]



What’s next?

• Faster optimization

• Coping with non-Euclidean domains

• New distortion metrics



THE END

(Some things cannot be mapped)


